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Rigorous treatment of the BCS model of superconductivity 

Robert J Bursill and Colin J Thompson 
Malhematia Department, University of Melbourne. Parhille, Mctoria 3052, Australia 

Received 8 October 1992 

AbsIracL We show that the variational theory of Bardeen-Cooper-Schreifer (E=) is exact 
for the BCS reduced Hamiltonian for attractive pair potentials which satisfy reasonable 
mndilions. Specific forms of lhe pair polenlial are used for illustralive purposes and to 
provide explicit proofs of some of the more technical details. 

1. Introduction 

The BardeenXooper-Schreifer (BCS) theory of superconductivity [I] is arguably one 
of the most successful and widely known theories in condensed matter physics. The 
theoly is based on the so-called BCS reduced Hamiltonian 

where cko (e;,) is the destruction (creation) operator for particles with Wavevector 
IC, kinetic energy cl; and spin U =t or I, and 

bk E C - k i C I ; ,  (1.2) 

is the annihilation operator for a (Cooper) pair of fermions with opposite spin and 
momentum. The two-body potential Jkl is assumed to be attractive (non-negative) 
and in conventional BCS theory to be mediated by electron-phonon interactions. 

In their original paper 111 BCS used standard variational methods to obtain ground 
state and thermodynamic properties of the model which were subsequently claimed 
by several authors to be exact in the thermodynamic, or bulk, limit. 

Bogoliubw, Zubarev and Tberkovnikov, for exampie, used thermodynamic 
perturbation theory [2] and Green function methods [3] in their proof of the validity 
of BCS theory while Miihlschlegel [4] used a functional integral and saddle-point 
approach to establish the same result for the special case of a separable potential 

J k f  = VkV,. (1.3) 

The separable case was also considered by Bogoliubov Jr [SI and in all cases the 
coupling constants were non-negative and satisfied sufficient conditions to guarantee 
the existence of the thermodynamic limit. 

On close scrutiny, however, none of the mentioned proofs of the validity of the 
BCS theory is strictly valid, from a contemporary statistical-mechanical viewpoint, 
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although certain extreme limiting cases such as the strong-coupling h i t  considered 
by Thouless [6] and certain pound-state properties discussed by W d a  and Fukuda 
[I, Baumann ef ai [SI and Mattis and Iieb 191 would be classified as rigorous results. 

In view of the recent revival of interest in pairing theories as a basis for high- 
temperature superconductivity [lo] it seems timely to re-examine the question of the 
validity of BCS theory in the context of an exact statistical mechanical treatment of 
the BCS model with Hamiltonian (1.1). 

We make no comment here about possible pairing mechanisms for high- 
temperature superconductivity, or conventional superconductivity, such as the 
phonon-mediated electronic attraction in the original BCS theory. We thus make 
a distinction between BCS theory and the BCS model (Ll), which forms the basis for 
the present discussion. 

In the following section we state our main result and discuss some special cases. 
The bulk of the proof of our main result is given in sections 3 and 4 where lower and 
upper bounds, respectively, are obtained for the grand canonical potential. Technical 
details which show, for example, that the bounds coalesce in the thermodynamic limit, 
subject to certain conditions on the pairing potential, are given in appendiwcs. The 
final section contains a discussion of our results. 

R J Bursill and C J 7hompson 

2. Statement af the main result 

We consider the BCS reduced Hamiltonian (1.1) in a ddimensional box with volume 
V = L d ,  and assume that the matrix J ,  with pair potentials J, ,  as entries, is 
symmetric (.Ik, = J lk ) ,  has positive entries (Jk, > 0), is positive definite (i.e. the 
eigenvalues of J are positive), and is of trace class in the thermodynamic limit. 

The grand-canonical partition function Q is defined by 

Q = Tr exp (-p('H - p N ) )  (2 1) 

where p = (IcT)-' is the inverse temperature, p is the chemical potential and 

is the total numbcr operator. The grand-canonical potential is defined by 

X ( I ' , Z , T )  = v-'logQ (2.3) 

with L = exp(pp), the fugacity, determined as a function of the density p ,  by 

The BCS expression for x is [I] 
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where 

2 X 

X 2 
h ( r )  = -tanh - 

and A, is a solution of the so-called energy-gap equation 

which maximizes xm. 
Our main result is expressed as the following 

Theorem. For a system of fermions with Hamiltonian (1.1) and pair potential J h f  
satisfying the above conditions 

In (2.9) it is implicitly assumed that J,, satisfies further conditions to guarantee the 
existence of the thermodynamic limit. 

Specilic forms for J k f  which satisfy the required conditions and which we use 
later for illustrative purposes are: 

(i) Tramlationally invariant 

J,, = v- 'K (2n(k - i )L- ' )  (210) 

with k(0) the Fourier transform of a positive integrable function A'; 
(ii) Separable 

J,, = v-'u(2nk/L)v(27rl/L) (2.11) 

with U (  0) a positive, bounded and continuous function; 
(iii) Kac-type 

J,, = rdW-/IIk - 111) (212) 

where K is positive, continuous and integrable, and y is a positive constant. 
First the BCS theory has 

a mean-field-like character to it and it is well known that mean-field theories in 
general become exact for systems with Kac potentials in the limit y - O+ (after the 
thermodynamic limit) 1111. Second, as noted by several people [U], the BCS model 
is equivalent to a k-space X-Y model with k-dependent transverse magnetic fields 
so that in a Kac (y + Ot) limit the BCS theory should reduce to a simple variant of 
the CurieWeiss theory of magnetism. We shall see that this is precisely the case in 
section 5 where the limiting form of the grand-canonical potential, energy gap and 
critical-temperature equations for the three cases (2.10)-(2.12) are presented and 
discussed. 

The motivation for considering (2.12) is two-fold. 
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3. Lower bound on the grand-canonical potential 

In order to obtain a lower bound on the grand-canonical potential we add and subtract 
onumbers $k to the pair creation and annihilation operators in (1.1) to obtain 

R J Bursill and C J Thompson 

l i= l i"+ l i ,  (3.1) 

where 

(3.2) 

'H" - pN = C(.k - ~ ) c : , c ~ ,  - C(nl;bi t Aib,)  t E $ i A k  (3.3) 
krr k k 

where 

Ak 5 Jkr$ i .  (3.4) 
I 

We now apply the Bogoliubov variational principle [13] to obtain a lower bound for 
the grand-canonical partition function (?..I), 

Q 2  Q,exP(-P('H,)u) (3.5) 

8, = Tr exp (-P ('H" - PN)) 

where 

(3.6) 

and 

(A),  = &;I Tr A exp (-P (Nu - p N ) )  (3.1) 

denotes the usual grand-canonical average of A with respect to the reference system 

The operator E,, - pN defined by (3.3) is quadratic in Fermi creation and 
annihilation operators and can be diagonalized [3] by an appropriate unitary (so- 
called Bogoliuhov-Valatin) transformation. The reference grand-canonical potential 
is thus found to be 

XU. 

xo( v, 2, T) = v-' log Q" - pv-' (li,)" 

P E k  C $ ; A ,  
= I o ~ ~ z + ~ ~ ~ o ~ c o s ~ ~ - -  2 

k 1' h 
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where E, is defined by (2.6) and h is defined by (27). From our assumption that J 
S of trace class the last term in (3.8) is of order V-' and will be ignored henceforth. 

The optimal bound from (3.5) and (3.8) is obtained by choosing 

l l fk  = ( b k ) ~  = $PA,h (PEL)  (3.9) 

which together with (3.4) resule in the energy-gap equation (2.8). For this choice of 
the parameters xo reduces to the BCS expression (2.5) and from (3.5). (3.8) and (2.5) 
we obtain the lower bound 

x ( V , z , T )  2 xBCs(V,z,T). (3.10) 

The result (3.10) and the pair-dewupling manipulation (3.1) are, in fact, quite well 
known and date back at least to the pioneering work of Bogoliubov [3]. 

4. Upper bound on the grand-canonical potential 

'lb obtain an upper bound on the Grid-canonical potential, we apply the following 
generalization of the Golden-Thompson inequality [14] 

Tr eA+B 6 Tr(@/"eB/")" ( 4 4  

which holds for A and B Hermitian operators and n 2 1 an integer. 
Combining (4.1) with (2.1) and (1.1) we obtain 

where 
A, E -P(% - &)(CL,Ckt + C - . , , C - k . I ) .  t 

We now make use of the following identity [14] 

(4.3) 

which holds for any positive definite, real symmetric matrix A, and any set of 
operators {O,} which commute pairwise and where d2zk denotes d(Re z)d(Imz). 

Since J is real symmetric and positive definite (by assumption) and the b,- 
operators commute painvise, we can apply (4.4) separately to each of n terms in 
the right-hand side of (4.2) to obtain 
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where 
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Bkr 3 P (&bk + zkt61)  . 

In order to bound the trace appearing in (4.5) we use the Hiilder trace inequality 
~ 5 1  

with 

to obtain the bound 

where Tr, denotes a trace over the block 

Hk ~(10),Ctk,10),C!xi10),C~~C!bi10)) (4.10) 

of the Hilbert space H = Bk H ,  on which A, and B,, act and here and henceforth 
we assume that n is even 

Next we use the following inequality 1141 

where 

(4.12) 

denotes the norm of the operator A and 11+11 denotes the norm of the vector 4. 
Combining (4.8), (4.9) and (4.11) we obtain 

where 

- p X h ,  E A, + B h t .  (4.14) 

From (4.3) and (4.6) it will be noted that 'HLt is quadratic in Fcrmi operators and 
hence can be diagonalized by a Bogoliubov-Valatin transformation. The traces in 
(4.13) are thus readily evaluated and on combining (4.2), (4.5) and (4.13) we obtain 

0 < n," (4.15) 
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where 

(4.16) 

and in the final simplification we have factored the (2Vn)-dmensional integral into 
a product of n identical (2V)-dimensional integrals and used the elementaly bounds 

llAkll < 2P I'k - IIBkl l l  < WI%l (4.17) 

which follows easily from (4.3), (4.6) and (4.12). 
For 0 < E < 1 we now define a set of positive quantities 

c k  = 4[( 1 - c)Ph(PEk)]-L (4.18) 

and a corresponding diagonal matrix 6 with entries Ck where Ek is defined by (2.6). 
Adding and subtracting a diagonal term to the exponent in (4.16) we obtain 

(4.19) 

It then follows that 

e v n-'xmu 
4n ' det (I  - JC-') 

where 

xmaX 5 max x{zl 
(21 

(4.20) 

(4.21) 

(4.22) 

and in obtaining (4.21), we have used (4.4), assuming that J-' - C-' is positive 
definite. The proof of this assumption is given in appendix Al. 

Combining (2.3), (4.15) and (4.21) we then have 

x < XFI (4.23) 



n 6  

where 
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(4.24) 

By differentiating (4.20) with respect to zk it is easily established that x{z} is 
maximized when 

n xn 3 xmlx - logdet ( I  - JC-'). 

l ~ k l  = Ak + O(C) + O(n-'). (4.25) 

Combining (2.9, (2.6), (4.18), (4.20), (4.22), (4.24) and (4.25) it then follows that 

(4.26) 

where xBcs is defined by (2.5). The subdominant terms in (4.26) are uniformly 
bounded over V. 

Finally, in order to establish our main result (2.9), we nced to show, from (3.10), 
(4.23) and (4.26), that 

n 
~ ~ = ~ ~ - - l o g d e t ( l - J C - ' ) + O ( ~ ) + O ( n - ' )  V 

iim v- 'Iogdet(l-  J C - ' )  = 0. (4.27) 
V-CU 

In appendix B we show that (4.27) holds for several choices of the pair potential 
mentioned in section 2 

5. Summary and discussion 

In this paper we have shown that the variational theory of BCS is exact for the BCS 
reduced Hamiltonian in the thermodynamic limit, provided the pair potential satisfies 
reasonable conditions, stated in section 2 Specific forms for the potential were used 
for illustrative purposes and to provide explicit proofs for some of the more technical 
details. 

The grand-canonical potential in the thermodynamic limit is given, in general, by 

where 

E(*)  = [ (P  - E ( * ) ) *  t (A(0))2]"2. (5.2) 

The energy-gap equation (28) in the thermodynamic limit reduces in the 
translationally invariant case (2.10) to 
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In the separable case (2.11) A(0) = au(0 )  and a is the solution of the scalar 
gap equation 

( u ( e ) ) z h  ~ , / ( p  - e ( e ) ) z +  ( a v ( e ) ) z  .ne. (5.4) ( ) a = -1 Pa 
W n ) d  [0 ,2*]d  

In the case of the Kac potential (2.12) we show in appendix 5.3 that (2.8) 
completely decouples in the Kac Limit (y + O+) (after the thermodynamic limit) 
yielding 

where 

The result (5.5) is not, surprisingly, equivalent to mean-field theory for the X-Y 
model [I61 and is to be compared with the usual king model Curie-Weiss theory [Ill 
which in the present notation has equation of state 

h (Pmd = 41 CUP (5.7) 
where m, is the spontaneous magnetization. 

In the more general ws setting the energy gap plays the role of an order 
parameter and by analogy with the magnetic case, the energy gap vanishes above 
the aitical temperature T,. The equation determining T, is given in appendix A2 
where we show that there exists a non-trivial solution to the gap equation if and only 
if T < T, and that the non-trivial solution must be taken in order to obtain the 
correct grand-canonical potential. 

The critical temperature in the bulk Limit is given in the translationally invariant 
case (i) (2.10) by 

where 

In case (ii) (2.11) we have 

(5.10) 

and in case (iii) (212) we have 

Finally, in the separable and Kac cases it is clear from (5.4) and (5.5) that a 
unique non-trivial solution exists to the gap equation below T, while in case (i) it 
is clear U posteriori from our main result that if (5.3) has more than one non-trivial 
solution then they must yield the same grandcanonical potentials (5.1). 
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Appendix A. Pmof that the matrix J-' - C-' is positive definite and the critical 
temperature 

Al. Proof that the ma& J-I - C-l is positive definite 

In this appendix we show that the matrix J-' - C-' is positive definite, where J 
satisfies the requirements stated in section 2 and C is defined in section 4. 

Now J-I - C-' is congruent to C1/zJ - lC ' / z  - I so it suffices to show that all of 
the eigenvalues of C-'I2JC-'IZ are bounded below and away from 1. We, in fact, 
show that the maximum eigenvalue is not greater than 1 - E. 

In doing so we require the following result [l?. 

Theorem Al. (Perron-Frobenious.) If A is a square matrix with positive entries 
( A , ,  > 0) then the eigenvalue of A which is greatest in magnitude is real and 
pos!:ti.e. It is also simple and the corresponding eigenvector can be chosen so that 
all components are positive. Further, A can have no other eigenvector with all 
components non-negative. 

We note that using (4.18), (2.8) may be written 

C-'IzJC-'12( = (1 - e ) (  

where 

e C-'12A 2 0 

and A denotes the vector with components A k .  
We also require some properties of the function x,,. Ignoring the last term in 

(3.8) and assuming A to be real, we can use (3.4) to obtain 

Differentiating we get 

where 

('4.4) 

> O  
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the last inequality being due to the fact that h’( z) < 0 for z > 0. 
xu is bounded above, is decreasing in llA\l if \\All is sufficiently large and the 

stationary points of xu are the solution of (28). Now, xo clearly does not decrease if 
we replace the Ah by their absolute values ( J  is assumed to have positive entries). 
It follows that there is a non-negative solution of (2.8) at which xo attains its global 
maximum. 

The Hessian matrix corresponding to a stationary point of xu is 

(‘4.8) H = -u l / z  y l / z  J v l / z  - I y l / z  
zp V 1 1 

where U is the diagonal matrix with entries uk. 
Then from (Ai) 

and (A.2) is a non-negative eigenvector of C-l/z JC-l /z  with eigenvalue 1 - c. 
C-112JC-*Iz has positive entries, however, so from theorem A1 the maximum 
eigenvalue of C-I/zJC-1/2 is 1 - E .  

Next we suppose that (2.8) does not have a non-negative, non-zero solution. We 
take A = 0 and so using (4.18) and (2.6) we have 

Suppose that (28) bas a non-negative, non-zero solution. 

We consider the Hessian matrix U ,  corresponding to A = 0 namely 

where U, E u ( A  = 0). Now using (A.9), (A.5) and (26) we obtain 

so from (A.10) H ,  is congruent to C 1 / 2 J C ’ / z  - ( 1  - € ) I .  But from our assumption 
that (2.8) has no non-negative, non-zero solution and the properties of xu, xu must 
take on its global maximum at A = 0 and Ho and therefore ClIzJc112 - (1 - E ) Z  
must be semi-negative definite. 

In either case then the maximum eigenvalue of C-1/2JC-1/2 is not greater than 
1 - E as required as long as we define A to be the non-zero, non-negative solution 
of (2.8) if one exists and zero otherwise. 

A2 The critical temperature and he exiktence of non-trivial solutions to the gap equation 

The argument in the previous section leads naturally to the critical temperature 
T, = l / k &  below which the system is ordered (the energy gap is non-zero). 
We showed that if (2.8) has no non-zero, non-negative solution, then U ,  (or 
equivalently U:” Ju:” - I )  is semi-negative definite. We now show the converse, i.e. 
if U:/’ Jui” - Z is semi-negative definite then (2.8) has no non-zero, non-negative 
solutions. Contrapositively, (2.8) has a non-negative, non-zero solution if and only if 

JuiJ2 - I has a positive eigenvalue. 
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Tb establish this, we can use (A.6) and properties of h to deduce that 

U, < ( 3 ) k  . (A.12) 

It follows from Courant’s principle [17] and (AS) that if H ,  is semi-negative definite 
then all the stationary points of xu are maxima (i.e. they all have semi-negative 
definite Hessian matrices). But then x, can only have one stationary point-a 
maximum at A = 0. The required result thus follows. 

We next note that from Rayleigh’s principle, the maximum eigenvalue of 
U0 

‘1’ Ju:f2 - I is 

( v , ) ~  is easily seen to be a strictly monotone decreasing function of p. A simple 
monotonicity argument then establishes that A,, is a strictly increasing function of 
p. Also A,, -+ -CO as p --L 0 and A,, > 0 if p is sutliciently large. The critical 
temperature is therefore defined by 

X,,,(P = PA = 0 (A14) 

Appendix B. Proof that iimv+, V-’logdet (I - JC-’) = 0 

In this appendix we show that V-I logdet (I - JC-’) = 0 vanishes in the 
thermodynamic limit. We consider, in turn, each of the three cases mentioned in 
section 2 

B1. Pandationally invanan? polenrial 

We consider the potential form (2.10). For the sake of simplicity we restrict our 
derivation to the d = 1 case. The extension to higher dimensions is straightforward. 
In one dimension we have 

where h’ is a positive, continuous function. We assume that there exist positive 
constants b and Af such that 

for z > M .  (B.2) 
1 

IC($) < +Ifb 

This ensures the existence of the limiting form of (B.1). We assume, again for 
simplicity, that IC is monotone decreasing. 

Now J is cyclic and can be diagonalized by the unitary matrix S where 

e2aikl/L 
s,, E -. JV (B.3) 
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That is 
S t J S  = diag{ K (  l ) ,  K(2) ,  . . . , K(  $ V  - l ) ,  K (  i V ) ,  Ii( i V  - I), 

We let P denote the permutation matrix that transforms St J S  into a diagonal matrix 
R with progressively increasing diagonal elements, Le. 

where 

. . . ,IC( l), K(O)}. 

R = P- 'S tJSP = diag{fl,. . . , f v }  

fi = IC(V12) 
f2 

P.4) 

(B.5) 

= f3 = IC( 1/12 - 1) 
f4 = fs = K(Vl2-2)  

so we can use (4.18) and the fact that 0 6 h < 1 to obtain 

b ;P. (B.8) 

Q = P-'StC-'SP. (B.9) 

We make the definition 

The matrix elements of Q are those of StC-IS rearranged so 
I Q d  6 :P. (B.10) 

Next we note that 
logdet [I - JC-'1 = logdet [ I  - A] (B.ll) 

where 
A R ' I ~ Q R I I Z .  (B. 12) 

A is Hermitian and is similar to <-1/2JC-'/z which is obviously positive definite. We 
show in appendix A1 that the maximum eigenvalue of C-112JC-112 is not greater 
than 1 - E. The eigenvalues of A which we denote by {cyk} can, therefore, be ordered 
so that 

(B.13) 
so applying (B.12) we see that 

1 - € >  011 > a2 2 ' " >  cyv- ,  > 01" > 0 

1 
1' 0 < -- logdet [I - JC-'1 

V = ---Clog(l-01,). 1 

k = I  
V (B.14) 

We now require some results from matrix theory [17]. 
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Theorem B.I. 
eigenvalues 

R J Bursill and C J Thompson 

(The inclusion principle.) Let A be a V x V Hermitian matrix with 

a, 2 a2z " ' 2  av 

and let B denote the ( V  - 1) x ( V  - 1) matrix obtained by striking out the last row 
and column of A. If B has eigenvalues 

P I  z Pz z ' ' .  z Pv-1 

then 

a, > P I  > a 2  z Pz 2 ' " >  a v - 1 z  Pv- ,  z a v .  

We extend the principle to obtain the following result 

CoroNary B.2. Let A be a V x V Hermitian matrix with eigenvalues 

a l > a * ~ " ' > a " .  

(B.15) 

For each k = 1, . . . , V, we let A(,) denote the k x k matrix obtained by striking out 
the last V - k rows and columns of A .  Then aj is bounded above by the maximum 
eigenvalue of A(v-j+l) for each j = 1,. . . ~ V .  

To prove the corollary we denote the eigenvalues of A ( k )  by 

Appying the inclusion principle to A("), we arrive at 

< a!"-') for j = 2,,  . . , k. I-1 

Iterating this, we get 

(8.16) 

(B.17) 

thus establishing the result. 

Theorem B.3. (Gershgorin) If B is a k x k matrix, then each of its eigenvalues, X 
satisfies one of the following set of inequalities 

(B.18) 

A simple consequence of this result is that the maximum eigenvalue A,,, of a 
IC x k Hermitian matrix, B satisfies 

~ , , ,<kmaxIBi j1 .  (B.19) 
:I 
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Now Aij  = f;'*Qij f;'* so applying (B.lO) and using the fact that f, < f2 < 
f3 < . . . < fv, we obtain a bound on the elements of A("), the k x k submatrix of 
A, namely 

(B.20) 

It follows from (B.19) that the maximum eigenvalue of A(k)  is bounded above by 
$kpJC[(V - k)/2)]. It thus follows, using the corollary to the inclusion principle, 
that 

We now make the definition 

and set 

(B.21) 

(B.22) 

(B.23) 

If k > 1 + 2Vc then ( k  - 1)/2 > Ve > M and so applying (B.2) and (B.22) we 
have 

where use has been made of (B.23). It follows n! g (B.21) and (B.24) ' 

- log ( I -ak)<- log  1--K - [ Y ( 3 1  
< log [1+ Y K  (T)] 

where in performing the last step we make use of the fact that log( 1 + 8 )  < z. 
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Combining (B.25) with p.13) and (B.14), we achieve 

1 
V O<--1ogdet [ I - J C - ' 1  

The second term is a tail of a convergent series and so the required result follows. 

E2 Separable potential 

We next examine the separable potential form (2.11). 
The matrix J in this case is a projection matriu, Le. 

2 t  J = q ulul 

where 

and U, is the unit vector with components 

(B.27) 

(B.28) 

(B.29) 

We let uz, . . . , uv denote an orthonormal basis for the kernal of J (i.e. the 
subspace orthogonal to ul). {Cu2,. . . , Cuv} is then a linearly independent set of 
V - 1 eigenvectors for I - JC-', each with eigenvalue 1. We let A ,  denote the other 
eigenvalue of I - JC-'. Now J(-I is similar to C- ' / z JC- ' / z  and it is shown in 
appendix A1 that the maximum eigenvalue of C-1/2JC-'/2 is not greater than 1 - E 

so A, > E. 
Combining these results, we obtain 

1 
V O<--1ogdet ( I - J C - ' )  

log e < -- V (B.30) 

from which the required result follous. 
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B3. Kac pofential 

We consider the Kac form (2.12). 
In this case (28) then completely decouples in the Kac limit (y - Ot) (after the 

thermodynamic limit). That is, for large k and V with k/V fixed, Ah approaches a 
limit A (2?rkl /L , .  . . ,2?rkd/L)  and 

(B.31) 

where 

A(@) is therefore determined by 

A(W(PE(Q))  = 4A(e)/oP (B.33) 

and we choose the non-trivial solution if one exists. That is, using the fact that the 
function h p d ( p  - 0, 
A(0) = 0 if h(P(@ - <(e) ) )<  4/aP and is the positive solution of 

+ zz) is positive and monotone decreasing in x ( 

h(PE(e)) = 4 / 4 3  (B.34) 

otherwise where 

A(@ is continuous and A, - A ( 2 ? r k l / L , .  . . ,27rkd/L)  vanishes to zeroth order 
in y and l /V,  the correction terms being uniformly bounded over I;. Applying the 
previously mentioned properties of A(@), (4.18) and the continuity and monotonicity 
of h we arrive at 

so 

1 - E / 2  c 2  4 ~ 

cy 

(B.36) 

(B.37) 

as long as y and 1/V are sufficiently small, the requirements being uniform over k. 
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J is cyclic and is diagonalized by the matrix S where 

1 ~ i i i k . 1 1 ~  = -@e 

having eigenvalues 

A, = yd IC(yllrll)e-2"'".P/L. 
r 

Using (€3.37) and (B.39) then, we obtain 

(B.38) 

(B.39) 

- 0  a s y - O f  (B.40) 
and hence the required result. The last step relies on the Reimnnn-Lebesgue lemma, 
namely 

y d  K(T\\r\l)ei@,r - o as 7 - O+ if e # o (B.41) 
r 

and was established by Thompson and Silver [lS], 
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