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Rigorous treatment of the Bcs model of superconductivity
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Mathematics Department, University of Melbourne, Parkville, Victoria 3052, Australia
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Abstract. We show that the variational theory of Bardeen-Cooper-Schreifer (Bcs) is exact
for the Bcs reduced Hamiltonian for attractive pair potentials which salisfy reasonable
conditions. Specific forms of the pair potential are used for iliustrative purposes and to
provide explicit proofs of some of the more technical details.

1. Introduction

The Bardeen—Cooper-Schreifer (8Cs) theory of superconductivity [1] is arguably one
of the most successful and widely known theories in condensed matter physics. The
theory is based on the so-called BCS reduced Hamiltonian

H= E € ChaCho = Z Tblby (1.1)
ke ki

where ¢, (c}w) is the destruction (creation) operator for particles with wavevector
k, kinetic energy ¢, and spin ¢ =7 or !, and

bk = C_lek»I (1.2)

is the annihilation operator for a (Cooper) pair of fermions with opposite spin and
momentum. The two-body potential .f;; i assumed to be attractive (non-negative)
and in conventional BCs theory to be mediated by electron-phonon interactions.

In their original paper [1] BCS used standard variational methods to obtain ground
state and thermodynamic properties of the model which were subsequently claimed
by several authors to be exact in the thermodynamic, or bulk, limit.

Bogoliubov, Zubarev and Tserkovnikov, for exampie, used thermodynamic
perturbation theory 2] and Green function methods [3] in their proof of the validity
of Bcs theory while Miihlschlegel [4] used a functional integral and saddle-point
approach to establish the same result for the special case of a separable potential

Jk! - 'Uk'f)r- (1.3)

The separable case was also considered by Bogoliubov Jr [5] and in all cases the
coupling constants were non-negative and satisfied sufficient conditions t0 guarantee
the existence of the thermodynamic limit.

On close scrutiny, however, none of the mentioned proofs of the validity of the
BCS theory is strictly valid, from a contemporary statistical-mechanical viewpoint,
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770 R J Bursill and C J Thompson

although certain extreme limiting cases such as the strong-coupling limit considered
by Thouless [6] and certain ground-state properties discussed by Wada and Fukuda
17), Baumann et af [8] and Mattis and Lieb [9] would be classified as rigorous resuits.

In view of the recent revival of interest in pairing theories as a basis for high-
temperature superconductivity [10] it seems timely to re-examine the question of the
validity of BCs theory in the context of an exact statistical mechanical treatment of
the BCs model with Hamiltonian (1.1).

We make no comment here about possible pairing mechanisms for high-
temperature superconductivity, or conveational superconductivity, such as the
phonon-mediated electronic attraction in the original BCS theory. We thus make
a distinction between BCS theory and the BCS model (1.1), which forms the basis for
the present discussion.

In the following section we state our main result and discuss some special cases.
The bulk of the proof of our main result is given in sections 3 and 4 where lower and
upper bounds, respectively, are obtained for the grand canonical potential. Technical
details which show, for example, that the bounds coalesce in the thermodynamic limit,
subject to certain conditions on the pairing potential, are given in appendixes. The
final section contains a discussion of our results.

2. Statement of the main result
We consider the BCS reduced Hamiltonian {1.1) in a d-dimensional box with volume
V = L%, and assume that the matrix J, with pair potentials J;, as entries, is
symmetric (J,, = J;;,), has positive entries (J,, > 0), is positive definite (i.e. the
eigenvalues of J are positive), and is of rrace class in the thermodynamic imit.

The grand-canonical partition function @ is defined by

Q = Trexp (—3(H — uN)) @1

where 8 = (k7)~! is the inverse temperature, y is the chemical potential and
N=3 kot @2)
ke

is the total number operator. The grand-canonical potential is defined by
x(V,2,T)=V~liogQ 2-3)
with z = exp(Su), the fugacity, determined as a function of the density p, by

p= z%, (2.4

The BCS expression for x is [1]

—logdz+ 2§ BE, P 5~ a2
xBCS..log4~+V;logcosh 5 4vzk:Akh(,f3Ek) (2.5)
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where
1/2
Eyp = |(e — ) + A 26)
h(z) = Ztanh & (2.7
=g 2 7

and A, is a solution of the so-called energy-gap equation
B
Ay = IZI:JHA:h(ﬁEz) @8)

which maximizes xpcs.
Our main result is expressed as the following

Theorem. For a system of fermions with Hamiltonian (1.1) and pair potential J,;
satisfying the above conditions

x(zT) = fim x(V,z,T)

(2.9)
= Vlim xpes( Vs 2, T).
— 00
In (2.9) it is implicitly assumed that J,,; satisfies further conditions to guarantee the
existence of the thermodynamic limit.
Specific forms for J,,; which satisfy the required conditions and which we use
later for illustrative purposes are:
(1) Transiationally invariant

Joy= VK 2x(k-DLT) (2.10)

with K'(8) the Fourier transform of a positive integrable function K;
(ii) Separable

Jyy = V'lv(Zvric/L)v(Zwl/L) (2.11)
with v(8) a positive, bounded and continuous function;
(iii) Kac-type
J = v K (7|l - 1)) (2.12)

where K is positive, continuous and integrable, and + is a positive constant.

The motivation for considering (2.12) is two-fold. First the BCs theory has
a mean-field-like character to it and it is well known that mean-field theories in
general become exact for systems with Kac potentials in the limit v — 0% (after the
thermodynamic limit) [11]. Second, as noted by several people [12], the BCS model
is equivalent to a k-space X-Y model with k-dependent transverse magnetic ficlds
so that in a Kac (v — 0%) limit the BCS theory should reduce to a simple variant of
the Curie-Weiss theory of magnetism. We shall see that this is precisely the case in
section 5 where the limiting form of the grand-canonical potential, energy gap and
critical-temperature equations for the three cases (2.10)—(2.12) are presented and
discussed.
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3. Lower bound on the grand-canonical potential

In order to obtain a lower bound on the grand-canonical potential we add and subtract
c-numbers 1, to the pair creation and annihilation operators in (1.1) to obtain

H=Hy+H,; 3.1
where
—%} Jia(B} = #3) (b — ) (3:2)
and from (1.1) and (1.2)
- pN = kz(e,.. —pyel e - ;(Akbi + ALb) + ;xbzak (3:3)
where
Ap= 2@. (34)

We now apply the Bogoliubov variational principle [13] to obtain a lower bound for
the grand-canonical partition function (2.1),

Q> Qyexp (-8 {H,)y) (3.5)
where

Qp = Trexp (-8 (Hy — pN)) (3.6)
and

(Ao = Q7' Tr Aexp (=3 (Hy — pN)) (3.7)

denotes the usual grand-canonical average of .4 with respect to the reference system
Hy-

The operator H; ~ wN defined by (3.3) i quadratic in Fermi creation and
annihilation operators and can be diagonalized [3] by an appropriate unitary (so-
called Bogoliubov-Valatin) transformation. The reference grand-canonical potential
is thus found to be

xo( Vs 2, T) = V- og @y ~ BV=1 (Hy),

= logdz + = v Zlogcoshﬁ - Zd FA 9%
Tty ;JM wao_ ‘#’12] [{b1)g — 4]

+ 5 EJ“ [1 4 Bl E"“)h(,@E )] 3-8)
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where E, is defined by (2.6) and A is defined by (2.7). From our assumption that J
is of trace class the last term in (3.8) is of order V! and will be ignored henceforth.
The optimal bound from (3.5) and (3.8) is obtained by choosing

Y = {br)y = 1BALR(BEY) (3.9

which together with (3.4) resuits in the energy-gap equation (2.8). For this choice of
the parameters x, reduces to the BCS expression (2.5) and from (3.5), (3.8) and (2.5)
we obtain the lower bound

x(V,2,T) 2 xpes{V, 2, T). (3.10)

The result (3.10} and the pair-decoupling manipulation (3.1) are, in fact, quite well
known and date back at least to the pioneering work of Bogoliubov [3].

4, Upper bound on the grand-canonical potential

To obtain an upper bound on the grand-canonical potential, we apply the following
generalization of the Golden-Thompson inequality [14]

TreA+8 L Tr(eA/meP/m)m 4.1)

which holds for A and B Hermitian operators and » > 1 an integer.
Combining (4.1) with (2.1) and (1.1) we obtain

1 n
Qggns’rr[exp (HZA,C) exp (gz.]klb}_b,)] (4.2)
k I

where
Ay =P - ﬂ)(c;rncm + el (4.3)

We now make use of the following identity [14]

8 g\ _1 BN 41
exp (E;Amoioa) = (ﬁ) detA/];WI;[dzzk@‘P (— ;%Akllzkzl)
xewp (2526104 + 2, oh) 4.4)
P

which holds for any positive definite, real symmetric matrix A, and any set of
operators {O,} which commute pairwise and where d?z, denotes d(Re z)d(Im z).

Since J is real symmetric and positive definite (by assumption) and the b-
operators commute pairwise, we can apply (4.4) separately to each of n terms in
the right-hand side of (4.2) to obtain

n

ﬁ )nV _ / ) 12 (ﬁ » )
g =— n = ~ 2t
0= (52) (@) 1N C ) o

=1

x Tr f_[ [exp (% %: Ak) exp (% ZL: Bm)} {4.5)

t=1
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where
By, =p (z.':zbk + zktbl-) : (4.6)
In order to bound the trace appearing in (4.5) we use the Holder trace inequality
[15]
n 1/n

Tr }:]1 o,l <II [Tr (olo,) "/2] @7

t=1

with

0, = exp (%ZA,,) exp (-71; Zk: Bk,) (4.8)

k

to obtain the bound

T

Tr[] o,
1

=1

n

Ifn
<II|[TImlew@a/menGB /I @9
k

t=1

where Tr;, denotes a trace over the block

Hy={10) ¢l 100, ety 10) s chyel 10)) (4.10)

of the Hilbert space H = (¥, H, on which A, and B, act and here and henceforth
we assume that n is even

Next we use the following inequality [14]

s [eZAfne?.B/n]n'fz‘ < (1 + igumuwsm) ITr e4+5| @.11)
n
where

HAll= sup [|Ag]l (4.12)
llll=1

denotes the norm of the operator A and ||¢|| denotes the norm of the vector ¢.
Combining (4.8), (4.9) and (4.11) we obtain

n " i/n
T[] O‘I <II [H { (1 + %e3([lAnll+lanll)) ITr, e~ |}] @.13)
t=1

t=1 " k

where
— My = Ay + By, (4.14)

From (4.3) and (4.6) it will be noted that H,, is quadratic in Fcrmi operators and
hence can be diagonalized by a Bogoliubov—Valatin transformation. The traces in
(4.13) are thus readily evaluated and on combining (4.2), (4.5) and (4.13) we obtain

Q< q (4.15)
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where

q, = i)v—l Hdzz exp —-EZJ”lz*z)
n 2rn ) detJ Jpv - k n o kt “k%

—u)? 2
x| TT 4 {1+ 2esstea-sitizu 4zmshzﬁ\/(€k 2 + |7l
n 2

k

/=

(4.16)

and in the final simplification we have factored the (2V n)-dimensional integral into
a product of » identical (2V }-dimensional integrals and used the elementary bounds

| ALH <28 e — p | Byl < 28 |24, (4.17)

which follows easily from (4.3), (4.6) and (4.12).
For 0 < € < 1 we now define a set of positive quantities

(o =4[(1= €)BR(BE) ™ (4.18)

and a corresponding diagonal matrix ¢ with entries {, where E,, is defined by (2.6).
Adding and subtracting a diagonal term to the exponent in (4.16) we obtain

—_ g v 1 2 8 -1 -1 * Vx{z}/n
I = (an detJ mzv]';'[d S 4 g(']kl Ck Gni)zrer e

(4.19)
where
— 2 BV (s =€)+ [z
x{z} = logdz + o Zk:Iogcosh 5
L 4 sple—ul+inh) ) _ B 5 |zl
+ 3 Xk:log (1+ ~e - ; o (4.20)
It then follows that
cvﬂ-1Xnu
S Ger(1=JC N (4.21)
where
Xmax = 103X x{z} (4.22)

and in obtaining (4.21), we have used (4.4), assuming that J~! — ¢(~! is positive
definite. The proof of this assumption is given in appendix A.1.
Combining (2.3), (4.15) and (4.21) we then have

X € Xp1 (4.23)
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where

n

X1 = Xaax — 77 1080t (= J¢1). (424)

By differentiating (4.20) with respect to z, it is easily established that x{z} is
mazximized when

2] = Ay + O() + O(n™h). (4.25)

Combining (2.5), (2.6), (4.18), (4.20), (4.22), (4.24) and (4.25) it then follows that
XF = Xpes — % logdet (I — JC™1Y 4+ O(e) + O(n~") (4.26)

where xpcg is defined by (2.5). The subdominant terms in (4.26) are uniformly
bounded over V.

Finally, in order to establish our main result (2.9), we nced to show, from (3.10),
(4.23) and (4.26), that

Jim V-llogdet(I — J¢~1) =0. (4.27)

In appendix B we show that (4.27) holds for several choices of the pair potential
mentioned in section 2.

3. Summary and discussion

In this paper we have shown that the variational theory of BCS is exact for the BCs
reduced Hamiltonian in the thermodynamic limit, provided the pair potential satisfies
reasonable conditions, stated in section 2. Specific forms for the potential were used
for illustrative purposes and to provide explicit proofs for some of the more technical
details,

The grand-canonical potential in the thermodynamic limit is given, in general, by

i = z — '3—2 2h
Jim, X(V,2 ) = logs = gz [ (M@ hBEO) PO

+ %; /[0 e log cosh @@'Da (5.1)
where
E(6) = [(u— «(9)? + (a(8))] " (5:2)

The energy-gap equation (2.8) in the thermodymamic limit reduces in the
translationally invariant case (2.10) to

A(8) = % j{mw K (8- 9)A(S)R(BE($))DS. (5:3)
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In the separable case (2.11) A(8) = ev(f) and o is the solution of the scalar
gap equation

_ fBa . 5 - 2\
o= —4(2“,)5, /[O,zr]d(v(a)) h (ﬁ\/(,u €(8)) + (av(6)) )DB. (5.4

In the case of the Kac potential (2.12) we show in appendix B.3 that (2.8)
completely decouples in the Kac limit (v — 0%) (after the thermodynamic limit)
yielding
4A(8)

A(O)R (BE@) = =5

(.5)

where
as /m _K(Irlpor. (5.6)

The result (5.5) is not, surprisingly, equivalent to mean-field theory for the X-Y
model [16] and is to be compared with the usual Ising model Curie-Weiss theory [11]
which in the present notation has equation of state

h (Bmg) = 4/ af3 )
where m,, is the spontaneous magnetization.

In the more general BCS setting the energy gap plays the role of an order
parameter and by analogy with the magnetic case, the energy gap vanishes above
the critical temperature 7,. The equation determining T, is given in appendix A.2
where we show that there exists a non-trivial solution to the gap equation if and only
if T < T, and that the non-trivial solution must be taken in order to obtain the
correct grand-canonical potential.

The critical temperature in the bulk limit is given in the translationally invariant
case (i) (2.10) by

1 i
0= . Do D y(6 k(8-
Im@{(zﬁ)d /[U?zﬂd /io.m* b y(O)y($) (8 - &)

__ 4 (¥(8))*
B2 Jpame h(ﬁc(ﬂ—f('?)))pe} ¢5)

where
1
Il= Gmya ), (w(@pe.

In case (ii) (2.11) we have

_ B ——
U= g5ega [, (OB = o)) (5:10)

and in case (i) (2.12) we have
1= 2% max (B, (1 - <(9))). (5.11)

Finally, in the separable and Kac cases it is clear from (5.4) and (5.5) that a
unique non-trivial solution exists to the gap equation below T, while in case (i) it
is clear a posteriori from our main resuit that if (5.3) has more than one non-trivial
solution then they must yield the same grand-canonical potentials (5.1),
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Appendix A. Proof that the matrix J-! — {~? is positive definite and the critical
temperature

Al Proof that the matrix J~! — (~1 is positive definite

In this appendix we show that the matrix J~! — ¢! is positive definite, where J
satisfies the requuements stated in section 2 and ¢ is defined in section 4.

Now J-1_¢~!is congruent to ¢Y/2J-1¢Y/2 — I so it suffices to show that all of
the eigenvalues of (~Y2J¢~1/? are bounded below and away from 1. We, in fact,
show that the maximum eigenvalue is not greater than 1 — e,

In doing so we require the following result [17].

Theorem Al. (Perron-Frobenious.) If A is a square matrix with positive entries
(A;; > 0) then the eigenvajue of A which is greatest in magnitude is real and
pos:twe it is also simple and the corresponding eigenvector can be chosen so that
all components are positive. Further, A can have no other eigenvector with all
components non-negative.

We note that using (4.18), (2.8) may be written
CVRIeY2e = (1 ¢)¢ (A1)
where
E=¢"VIA 20 (A2)

and A denotes the vector with components A .
We also require some properties of the function yy. Ignoring the last term in
(3.8) and assuming A to be real, we can use (3.4) to obtain

BE,

Xo = logdz + ¢ Zlogcosh =k —Z:Azh({:iEk)
16V ZJMA Ah{BELR(BE,). (A.3)
Differentiating we get
8 2
gar = T A S suaner) - o (ad)
where
8 gaz ,
vz neE)+ 2w g, *3)
2
- f. [sechZﬁ f’“ _ ;fk) % (,BE,,)] (A.6)
k
>0 (A7)
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the last inequality being due to the fact that A'(z) < 0 for z > 0.

Xp 5 bounded above, is decreasing in {JA]} if ||Af} is sufficiently Jarge and the
stationary points of x, are the solution of (2.8). Now, x, clearly does not decrease if
we replace the A, by their absolute values (J is assumed to have positive entries).
It follows that there is a non-negative solution of (2.8) at which x, attains its global
maximum.

The Hessian matrix corresponding to a stationary point of y; is

H = E‘gyuz 2N I] A2 A8

where v is the diagonal matrix with entries v,

Suppose that (2.8) has a non-negative, non-zero solution. Then from (A.1)
and (A2) £ i a non-negative eigenvector of (~V2J¢~1/? with eigenvalue 1 — e.
¢~Y2J¢~12 has positive entries, however, so from theorem A.1 the maximum
eigenvalue of (~V2J¢-12 s 1—e.

Next we suppose that (2.8) does not have a non-negative, non-zero solution. We
take A = 0 and so using (4.18) and (2.6) we have

4
= . A9
%= BI= R B =) 42
We consider the Hessian matrix H, corresponding to A = 0 namely
Hy= %;};/2 Tk D { Bk (A-10)
where vy = (A = 0). Now using (A.9), (A.5) and (2.6) we obtain
;! |
(Vﬁ)k = 1—¢ (A'll)

so from (A.10) H, is congruent to (V/2J¢V? — (1 —¢)I. But from our assumption
that (2.8) has no non-negative, non-zero solution and the properties of x,, x, must
take on jts global maximum at A = 0 and H, and therefore (Y2JCH? — (1~ &)1
must be semi-negative definite.

In either case then the maximum eigenvalue of ¢~Y2J¢~1/2 js not greater than
1 — € as required as long as we define A to be the non-zero, non-negative solution
of (2.8) if one exists and zero otherwise.

A2. The critical temperature and the existence of non-trivial solutions o the gap equation

The argument in the previous section leads naturally to the critical temperature
T, = 1/kpB, below which the system is ordered (the energy gap is non-zero).

c

We showed that if (2.8) has no non-zero, non-negative solution, then H, (or
equivalently u[}/ 2 Ju[}’{ ?_ I) is semi-negative definite. We now show the converse, i.e.
if v{;/ 2 Jugf L semi-negative definite then (2.8) has no non-zero, non-negative
solutions. Contrapositively, (2.8) has a non-negative, non-zero solution if and only if

utl,/ 2J ué‘f % _ 1 has a positive eigenvalue,
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To establish this, we can use (A.6) and properties of A 10 deduce that
Ve < () - (A12)

It follows from Courant’s principle [17] and (A.8) that if H; is semi-negative definite
then all the stationary points of x, are maxima (i.e. they all have semi-negative
definite Hessian matrices). But then x, can only have one stationary point—a
maximum at A = 0. The required result thus follows.
We next note that from Rayleigh’s principle, the maximum eigenvalue of
1/2 ;. 1/2 .
v "Jyy "1 is

Aax = max et (1527 - I) o (A.13)
lizli=1

(vy); is easily secen to be a strictly monotone decreasing function of 3. A simple
monotonicity argument then establishes that A, is a strictly increasing function of
B. Also A, — —ocas 8 —0and Ay, > 0if 3 is sufficiently large. The critical
temperature is therefore defined by

Amax(B=0)=0 (A.14)

Appendix B, Proof that lim,,_ . V~Tlogdet(I - J{™') = 0

In this appendix we show that V-llogdet (I —J¢~!) = 0 vanishes in the
thermodynamic limit. We consider, in turn, each of the three cases mentioned in
section 2.

Bl. Translationally invariant potential

We consider the potential form (2.10). For the sake of simplicity we restrict our
derivation to the d = 1 case., The extension to higher dimensions is straightforward,
In one dimension we have

v/2

k@y= > K(rpe* (B.1)

==V /241

where K is a positive, continuous function. We assume that there exist positive
constants b and A such that

K(z) < mTlH,- for 2 > M. (B.2)

This cnsures the existence of the limiting form of (B.1). We assume, again for
simplicity, that /X is monotone decreasing.
Now J is cyclic and can be diagonalized by the upitary matrix & where

e2rikl/ L

S = N

(®3)
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That is
175 = diag{ K(1), K(2),..., K}V -1, KV}, K(iv - 1),
L KD, K(0)). (B.4)

We let P denote the permutation matrix that transforms StJ.S into a diagonal matrix
R with progressively increasing diagonal elements, i.e.

R =P 'S1JSP =diag{f;,..., fv} (B.5)
where

hH = K(V/2}

L =fH=KWV/1-1)

fo =TFfs=K(V[2-2)

fvoa=Fy_1 = K(1)

fv = K(0). (B.6)
Now

(st¢1s),, = %; Colgtmim(E=D1Y ®7)

so we can use (4.18) and the fact that 0 < 2 £ 1 to obtain

[(S1¢718) ] < 22 ST h(BE,)

<38 (B.8)

We make the definition

Q= Plst¢-lsp, (B8.9)
The matrix elements of Q are those of ST¢~1S rearranged so

Qi € 38 (B.10)

Next we note that

logdet [I - J¢™Y] = logdet [J — A] (B.11)
where

A= RVIQRY?, (B.12)

A is Hermitian and is similar to ¢~1/2J¢~1/2 which is obviously positive definite. We
show in appendix Al that the maximum eigenvalue of ¢~!/2J¢~1/2 js not greater
than 1—e. The eigenvalues of A which we denote by {«, } can, therefore, be ordered
so that

30 applying (B.12) we see that
1 -
0g —‘—,logdet [1-d¢7
1 v
= —Vf\:Ilog(l — o). (B.14)

We now require some results from matrix theory [17).
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Theorem B.l. (The inclusion principle.) Let A be a V' x V' Hermitian matrix with
eigenvalues

Q2o 2 2oy

and let B denote the (V — 1) x (V — 1) matrix obtained by striking out the last row
and column of A. If B has eigenvalues

Bi2Bpz 208y
then
2B za28hz 2ap_ 28 2oy, (B.15)
We extend the principle to obtain the following result.
Corollary B.2. let A be a V x V' Hermitian matrix with eigenvalues
G ZopZ 2y,

For each k= 1,...,V, we let A(%) denote the k x k matrix obtained by striking out

the last V — & rows and columns of A. Then «; is bounded above by the magimum

eigenvalue of A(V-7+D) foreach j=1,...,V.
To prove the corollary we denote the eigenvalues of A(%) by
agk) - agk) Z 2 a(kk).
Appying the inclusion principle to A, we arrive at
o) ¢ od*7h for 5 =2,...,k (B.16)
Iterating this, we get
a; = af) <ol TV <3P <o g a1 (B.17)

thus establishing the result.

Theorem B.3. (Gershgorin) If B is a k& x & matrix, then each of its eigenvalues, A
satisfies one of the following set of inequalities

A By <SIByl  i=1l... .k (B.18)
F#£E

A simple consequence of this result is that the maximum eigenvalue A, of a
k x k Hermitian matrix, B satisfies

Amax € kml?x |By;|- (B.19)
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Now AU = f”zQ” f”?‘ so applying (B.10) and using the fact that f; < f, <

fs < -+- < fy, we obtain 2 bound on the elements of A, the k x k submatrix of
A, name]y

|A”‘J f:K (Vz R). (B.20)

It follows from (B.19) that the maximum eigenvalue of A(*) s bounded above by
-};k,BK [(V — k)/2)). It thus follows, using the corollary to the inclusion principle,

that

oy < Vﬁk’( ) . (B.21)

We now make the definition
_14b/2

0<C=—1—+_b<1 {B.22)

and set
3 2/b
V > max { MVe, (5) } . (B.23)

If k> 142Ve then (k—=1)/2 > V*° > M and so applying (B.2) and (B.22) we
have

Vﬁ va

4(5(k— 1)U
v

a4V <17 5)

_8_

NZIE

<1 (B.24)

—K(lk-1) <

<

where use has been made of (B.23). It follows using (B.21) and (B.24) that

—log (3 — o) < —log [“Vﬁ (T)]

a2 20 (55 - 22 ()] ]
slog[”Kng (%)]
ggff(k—;) (B.25)

where in performing the last step we make use of the fact that log(1 + ) < 2.
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Combining (B.25) with (B.13) and (B.14), we achieve

0g —llogdet [F-J¢Y

v

1+2V° 14
——Z,‘Jog(z am Y. log(l-ey)

k=142Ve
142V¢ 1vg
S——v—loge+ - E I( )
k=l+2ve
[=+]

_ (-1 —b/2(1+b) 8 k-1

(v +2V )loge-;—zk_évch’( 5 ) (B.26)

The second term is a tail of a convergent series and so the required result follows.

B2. Separable potential

We next examine the separable potential form (2.11).
The matrix J in this case is a projection matrix, ie.

J = nzuluI (B.27)
where
1/2
n= [v-l > 'u_%.] (B.28)
k
and u, is the unit vector with components
Vi
= ) B.29
(w1 ) 7 Wi ( }

We let u,,...,u, denote an orthonormal basis for the kernal of J (i.e. the
subspace orthogonal to u;). {¢u;,-..,{u,} is then a linearly independent set of
V — 1 eigenvectors for I — J{~1, each with eigenvalue 1. We let A, denote the other
eigenvalue of J — J¢~'. Now J¢™' is similar to ¢~'/2J¢~"/2 and it is shown in
appendix Al that the maximum eigenvalue of ¢~#2J¢=1/2 is not greater than 1 — e
SO A; 2 e

Combining these resvlts, we obtain

0g —%iogdet (1-J¢h

log A,
Y

log e
_T

(B.30)

from which the required result follows.
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B3. Kac potential

We consider the Kac form (2.12).

In this case (2.8) then completely decouples in the Kac limit (v — 0%) (after the
thermodynamic limit). That is, for large k& and V with k/V fixed, A, approaches a
limit A 2=k, /L,...,27k;/L) and

= 'g‘ZJMA h(BE;)
1
oyl
= 2 K- Ak (GE)
~ C0R0 8 > 2K Gl
_ ofAR(BE )
~ —k—r-i (B.31)
where
= fm (el (B32)
A(8) is therefore determined by
A(8)R (BE(0)) = 4A(6) /af (B.33)

and we choose the non-trivial solution if one exists. That is, using the fact that the
function h (6\/ (i —e(6))2+ wz) is positive and monotone decreasing in r > 0,
A(0)y=0if h(B(p—€(0)))< 4/aB and is the positive solution of

h(BE(0}) = 4/ (B.34)

otherwise where

E(8) = 1/(e(8) - )2 + (A(6))2. (B.35)

A(86) is continwous and A, —~ A 2wk /L,...,2xk, /L) vanishes to zeroth order
in v and 1/V, the correction terms being uniformly bounded over k. Applying the
previously mentioned properties of A({#), (4.18) and the continuity and monotonicity
of ~ we arrive at

¢t Nﬁ(l ) (ﬁﬁ(ml Z“kd)) (®36

L L
S0

1-¢/2

Gl — (B.37)

as long as v and 1/V are sufficiently small, the requirements being uniform over k.
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J is cyclic and is diagonalized by the matrix S where

Sy = _\/1“=/__ezwik-tjb (B.38)
having eigenvalues
Ny =74 3 KylirihertrrE. (®.39)
L

Using (B.37) and (B.39) then, we obtain

1 i
0< -7 logdet [ - J¢™]
—_ 1 =12 g e-1y2
= - - logdet [1 ¢ ge ]

1 (1—¢/2)
< - -ﬁlogdet [I - —TJ]
- d .
= —‘% Ek log [1 - —-.-_-(1 ZZ)T E [((,Y”r”)eka-er}

—-—1 (1 — EIZ)'}'d - i r
B (27{')& [0,2x]¢ I:l - o ZA' (7[[1‘”)6 DE as V — o

—0 as v — 0 (B.40)

and hence the required result. The last step relies on the Reimann-Lebesgue lemma,
namely

3 K(ylirllye® " —0 as 7 — Ot £ 0£0 (B.41)

and was established by Thompson and Silver [18].
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